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Abstract

This paper combines Sturm’s method with the tangent analysis method to solve a biochemical reaction involving multiplicity. This
method can easily derive the necessary conditions for multiplicity. In addition, we find a starting bifurcation point for multiplicity which
cannot be obtained by the tangent method alone. Moreover, a start-up strategy is suggested to obtain a high conversion and unique steady
state in four selected kinetic models of biochemical reactions, with inhibition. © 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

Many biochemical reactions involving free or immo-
bilized cells and enzymes as catalysts follow complex
kinetic schemes and do not obey simple Michaelis–Menten
kinetics. Substrate-inhibited and product-inhibited reac-
tions are common examples. The various kinetic models
that can be used for many biochemical systems have been
summarized previously [1]. Many of these kinetic models
indicated the possibility of the existence of multiplicity [2].
Past works have been confined mainly to the commonly
used substrate-inhibited kinetic models [3,4]. Bruns et al.
[5] and Sadana et al. [6] have analyzed more complex
kinetic schemes. Ramachandran et al. [7] have analyzed the
conditions for the occurrence of multiplicity. Their deriva-
tion methods are the same as the tangent method [8–11].
Although the elementary catastrophe theory [12] and the
singularity theory [13] are extensively used to solve the
steady-state multiplicity in reaction engineering, the tangent
analysis method is still a powerful technique. This method
has been referred to not only in biochemical reaction sys-
tems but also in chemical reaction engineering. Lin [8,10]
discussed the exact multiplicity criteria for autocatalytic
reactions in perfectly mixed Continuously Stirred Tank
Reactor (CSTR); however, the criteria can only be applied
to the situation when CSTR is perfectly mixed. In recent
years, the effects of macromixing and micromixing of two
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unpremixed feeds on the necessary and sufficient conditions
for multiplicity in a CSTR have been studied [14,15].

The existence of steady-state multiplicity may have sev-
eral practical implications. For example, multiplicity may
lead to washout and its existence places constraints on the
start-up and control policies needed to maintain the system
at a desired state. The start-up conditions will influence the
transient yield or selectivity of the desired product. When
multiplicity exists, different initial conditions may approach
different steady states. Thus, it is important to predict the
conditions for multiplicity to occur. Liou and Chien [16]
have recently used the discriminator roots of the characteris-
tic equation to solve the start-up problem of an autocatalyti-
cal reaction. However, their method cannot be used when the
order of conversion in the characteristic equation is above 2.
The same problem can also be found in the tangent analysis
method developed [9,11].

Takoudis et al. [17] used Sturm’s method [18] to study
multiple steady states in reaction-controlled surface-catalyzed
reactions. So far, combining the tangent method with
Sturm’s method to study steady-state multiplicity has never
been reported. On the other hand, the method of the dis-
criminator root of the characteristic equation [19,20] has
not been used in combination with the tangent method to
solve steady-state multiplicity in chemical engineering.

In this paper, we combine Sturm’s method with the
tangent method to solve multiple steady states of complex
biochemical reaction with substrate and product inhibition in
a CSTR. The simulated results show that our work can find
not only the necessary conditions for multiplicity but also
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can a starting bifurcation point for multiple steady-states
of four schemes of substrate-inhibited kinetic reactions. A
start-up strategy to obtain a high conversion and unique
steady state is also suggested.

2. Deriving the multiplicity region in terms of substrate
concentration

The behavior of a completely back-mixed reactor can be
represented in dimensionless form as

α(1 − a) = f (a) (1)

wherea represents the dimensionless substrate concentration
and has values from 0 to 1,f (a) represents the dimensionless
rate, andα a dimensionless parameter which accounts for
the residence time in the reactor.

To illustrate the existence of multiplicity, consider Fig. 1
as a graphical solution to Eq. (1). It consists of a rate curve
f (a) against (a). The points of intersection of this curve
with a straight line ofy=α(1−a) represent the steady-state
solutions to Eq. (1). This straight line has a slope of (−α)
and passes through the point [1,0].

If f (a) is a monotonically increasing function of the sub-
strate concentration, then only one such intersection is pos-
sible, implying a unique steady state. This is the situation for
the common Michaelis–Menten kinetics without substrate
inhibition. It is evident that, if the value ofα is either<α−
or >α+, then only one steady state exists. Here,α+ andα−
are the negative slopes of the two lines which are tangen-
tial to the rate curve from the point [1,0]. Hence, the nec-
essary condition is that two tangents must be drawn to the
rate curve from the point [1,0]. A sufficient condition for
multiplicity is that the value of (−α) should lie in between
the slopes of these two tangents. These conditions are now
represented mathematically.

Fig. 1. Schematic representation of the tangent analysis method.

Suppose the tangents touch the rate curve at pointsa1 and
a2. The slope of the straight line (dashed lines in Fig. 1)
must be equal to the slope of the rate curve at that point.
This leads to the following equations:

f ′(a1) = f (a1)

a1 − 1
(2)

and

f ′(a2) = f (a2)

a2 − 1
(3)

The necessary condition is therefore thata1 anda2 should
be real, i.e. the equation

F(a) = f ′(a)− f (a)

a − 1
= 0 (4)

should have two real roots in the interval 0<a<1. Eq. (4) is
called the characteristic equation.

Slopes of the two dashed lines−α+ and −α− can be
described as

α+ = f (a1)

1 − a1
(5)

α− = f (a2)

1 − a2
(6)

Hence, a sufficient condition for multiplicity is that

α− < α < α+ (7)

From the above derivation of the tangent analysis method,
the necessary condition for multiplicity is that Eq. (4) should
have two real roots,a1 and a2, in the interval [0,1] and a
sufficient condition for multiplicity is thatα− < α < α+.
If the system parameter violates one of the above necessary
and sufficient conditions, the system is unique.

3. Deriving the necessary conditions for multiplicity

In general, when the order of dimensionless concentration
a in Eq. (4) is larger than 2, the necessary conditions for
multiplicity (the existence condition ofa1 anda2 in [0,1])
cannot be easily obtained. Lin [9,11] used the plot of the
characteristic equation and employed an implicit criterion
to derive the exact uniqueness and multiplicity criteria of an
nth order reaction and a binary reaction in a non-adiabatic
CSTR. However, these systems are of the three or fourth
order ofa in the characteristic equation. Ramachandran et al.
[7] also derived the third or fourth order of the dimensionless
concentrationa in a characteristic equation for the complex
biochemical reactions. In their work, the conditions for the
existence ofa1 anda2 have not been discussed and were only
used to plot the simulated results for multiplicity. Sadana
et al. [6] used an empirical equation to express the necessary
conditions for the multiplicity of a biochemical reaction.
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Here, we combine Sturm’s method with the tangent analysis
method to study the condition for the existence ofa1 anda2.

Sturm’s method is outlined as follows [17,18]:
Given a real algebraic equation

F(X) = a0X
n + a1X

n−1 + · · · + an−1X + an

= 0 (a0 6= 0) (8)

without multiple roots, letN(x) be the number of the sign
changes (disregarding vanishing terms) in the sequence of
functions F0=F(X), F1(X)=dF(X)/dx, Fi(X)=−remainder
(Fi−2(X)/Fi−1(X)) for i>1; Fn(X)6=0 is a constant. Then, the
number of real roots of Eq. (8) located between two real
numbersa andb>a which are themselves not roots of Eq. (8)
is equal toN(a)−N(b).

If F(X) have multiple roots,F(X) and dF(X)/dx have a
common divisor; in this case,Fn(X) is not a constant and
N(a)−N(b) is the number of real roots betweena and b,
where each multiple root is counted only once.

Here, we use Sturm’s method to find the necessary con-
ditions for multiplicity (i.e. the existence ofa1 and a2 in
the range of [0,1]) of the third and fourth order ofa in the
characteristic equationF(a)=0 (Eq. (4)).

Case A: The order ofa in the characteristic equation is 3.
Let

F0(a) = F(a) = Ba3 + Ca3 + Da + E = 0 (9)

F1(a) = 3Ba2 + 2Ca+D = 0 (10)

F2(a) = k1a + k2 (11)

F3(a) = k3 (12)

whereB (B>0), C andD are coefficients and

k1 = 2C2

9B
− 2D

3

k2 = CD

9B
− 4

k3 = (2C − 3Bk2)/k1

k1 −D

We focus on the number of real roots located between 0
and 1 equal to the number of sign change ofN(0)−N(1) of
Eq. (9). On the other hand, the necessary conditions for mul-
tiplicity are two real roots,a1 anda2, in [0,1] of Eq. (9) from
Section 2. Furthermore, the properties of Eq. (9) are cases
(i) F(0)>0, F(1)>0 or (ii) F(0)<0, F(1)<0 andF(∞)=∞,
F(−∞)=−∞, F(−∞)=−∞ when two real roots exist in
the range [0,1]. Note that, whenN(0)−N(1)=0 exists,a1 and
a2 do not exist in [0,1], and whenN(0)−N(1)=1 anda1=a2
in [0,1] exists, a start bifurcation point for multiplicity oc-
curs. It implies that, when case (i)F(0)>0, F(1)>0 occurs,
the value ofN(0)−N(1) jumps from 0 to 2, or when case (ii)
F(0)<0, F(1)<0 occurs, and the value ofN(0)−N(1) jumps
from 1 to 3, andF(∞)=∞, F(−∞)=−∞ are the neces-
sary conditions for multiplicity when the order ofa in the
characteristic equation is 3.

Case B: The order ofa in the characteristic equation is 4.
Let

F0(a) = F(a) = Aa4 + Ba3 + Ca3 + Da + E = 0 (13)

F1(a) = 4Aa3 + 3Ba2 + 2Ca+D = 0 (14)

F2(a) = k4a
2 + k5a + k6 (15)

F3(a) = k7a + k8 (16)

F4(a) = k9 (17)

whereA (A>0), B, C, D andE are coefficients, and

k4 = 3B2

16A
− C

2

k5 = 2BC

16A
− 3D

4

k6 = BD

16A
− E

k7 = 4Ak6

k4
+ ((3B − 4Ak5)/k4)k5

k4 − 2C
(18)

k8 = k6((3B − 4Ak5)/k4)

k4 −D

k9 = (k5 − k8k4)/k7

k7
k8 − k6

The properties of Eq. (13) are case (i)F(0)>0,F(1)>0 or case
(ii) F(0)<0, F(1)<0 andF(∞)=∞, F(−∞)=∞ when two
real roots exist in the range [0,1]. It implies that, when case
(i) F(0)>0,F(1)>0 occurs, and the value ofN(0)−N(1) jumps
from 0 to 2 or when case (ii)F(0)<0, F(1)<0 occurs, and
the value ofN(0)−N(1) jumps from 1 to 3, andF(∞)=∞,
F(−∞)=∞ are the necessary conditions for multiplicity
when the order ofa in the characteristic equation is 4.

4. A start-up strategy for a high conversion and unique
steady state

The system parameters can be classified into three types:
(a) the reaction parameters as the reaction rate constants; (b)
the start-up parameter as an initial dimensionless substrate
concentration and (c) the operating parameter as the resi-
dence time. Thus, if a reaction engineer has chosen the bio-
chemical reaction type and the reaction parameters, the rest
is to determine the start-up and operating parameters for ob-
taining a high conversion and unique steady state. A start-up
strategy to obtain a high conversion and unique steady state
is suggested as follows:

Step 1. The biochemical reaction type and the reaction
parameters (k, E, Ki , K ′

i , Km, Kp andk′) are determined by
a reaction engineer.

Step 2. The uniqueness can be obtained by choosing a
start-up parameter (a design initial dimensionless substrate
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concentrationSdesign
0 ) to violate the necessary conditions

(N(0)−N(1)=2 for Sturm’s method) for multiplicity when
the order ofa is 3 or 4.

Step 3. Once uniqueness is guaranteed from Step 2, a
high conversion is obtained when a small value of operating
parameterα (α=KmF/kEV) is chosen by adjustingV or F.

5. Application to various kinetic schemes

Several kinetic schemes in Table 1 are analyzed with re-
gard to establishing the necessary and sufficient conditions
for multiplicity. For each kinetic scheme, the dimensionless
parameters necessary to characterize the system are defined,
the corresponding dimensionless rate form is given and the
expression forF(a) is presented in Table 1.

Scheme 1
It represents the most common type of substrate kinetics.

Typical examples include hydrolysis of sucrose by invertase
[20], hydrolysis of benzyl penicillin by amidase [21] and
phenol degradation [22].

Substituting the data in Table 2 of Hill and Robinson
[22], kE=0.295 h−1, Ki=0.0026 l mg−1, Km=41.2 mg l−1

and S0=1000, 1178 or 1400 mg l−1, respectively, into the
F(a) of Scheme 1 in Table 1, we obtain

S0 = 1000, [F0(0), F1(0), F2(0), F3(0)]
= [+,0,−,−], N(0) = 1

[F0(1), F1(1), F2(1), F3(1)]
= [+,+,+,−], N(1) = 1

S0 = 1178, [F0(0), F1(0), F2(0), F3(0)]
= [+,0,−,0], N(0) = 1

[F0(1), F1(1), F2(1), F3(1)]
= [+,+,+,0], N(1) = 0

S0 = 1400, [F0(0), F1(0), F2(0), F3(0)]
= [+,0,−,+], N(0) = 2

[F0(1), F1(1), F2(1), F3(1)]
= [+,+,+,+], N(1) = 0

From the above results, the system is unique when
S0≤1178 mg l−1. Fig. 2 shows multiplicity occurring when
S0>Sdesign

0 =1178 mg l−1. Note that the value ofN(0)−N(1)

Table 1
Rate forms and the corresponding equation off (a) and F(a) for various kinetic schemes

Scheme
No.

Kinetic scheme Dimensionless parameters f (a) F(a)

1 kES/(Km+S+KiS2) [20–22] α=KmF/kEV,
β=S0/Km,
γ=KiS2

0/Km

a/(1+βa+γa2) a3+((β−γ )/2γ )a2+1/2γ

2 kESexp(−s/K ′
i )/(Km + S) [1] α, β andψ = S0/K

′
i aexp(−ψa)/(a+βa+γa2) a3+((1/ψ)+(1/β)−1)a2

−(a/β)+(1/ψβ)
3 kES/(Km+S+KiS2)×1/(1+KpP) [7] α, β, γ andδ1=KpS0;

J=1+δ1(1+p0)
a/(1+βa+γa2)×1/(J−δ1a) 3γ δ1a4+2(βδ1−γ δ1−γ J)a3

+(Jγ−βJ−βδ1+δ1)a2−J
4 (kES+k′ES2)/(Km+S+KiS2) [1] α, β, γ as above and

δ=k′S0/k
(a+δa2)/(1+βa+γa2) δa4+2a3+((βδ−γ+β−δ)/γ )a2

+(2/γ )δa+1/γ

Fig. 2. Schematic representation of the example of Scheme 1 in Table 1.

jumping from 0 to 2 is the necessary condition for multi-
plicity.

Scheme 2
It represents an empirical relationship to account for sub-

strate inhibition. Using the data in Table VIII of Edwards
[1], kE=0.5265 h−1, Km=0.1138% (w/v), K ′

i=3.501%
(w/v) andS0 (% w/v)=5, 5.65 or 7, respectively, intoF(a)
of Scheme 2 in Table 1, we obtain

S0 = 5, [F0(0), F1(0), F2(0), F3(0)]
= [+,−,−,−], N(0) = 1

[F0(1), F1(1), F2(1), F3(1)]
= [+,+,+,−], N(1) = 1

S0 = 5.65, [F0(0), F1(0), F2(0), F3(0)]
= [+,−,−,0], N(0) = 1

[F0(1), F1(1), F2(1), F3(1)]
= [+,+,+,0], N(1) = 0

S0 = 7, [F0(0), F1(0), F2(0), F3(0)]
= [+,+,−,+], N(0) = 2

[F0(1), F1(1), F2(1), F3(1)]
= [+,+,+,+], N(1) = 0
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Fig. 3. Schematic representation of the example of Scheme 2 in Table 1.

From the above results, the system is unique when
S0≤5.65% (w/v). Fig. 3 shows multiplicity occurring when
S0 > S

design
0 =5.65% (w/v).

Scheme 3
It represents a situation where both substrate and product

of the reactionp inhibit the rate. The dimensionless prod-
uct concentrationp can be expressed in terms of the dimen-
sionless substrate concentrationa. Using an overall material
balance,

p = p0 + 1 − a (19)

wherep0 is the dimensionless inlet product concentration.
The dimensionless rate formf (a) presented in Table 1 can
be obtained from Eq. (19).

Same as Scheme 1 in Table 1, the value ofN(0)−N(1)
jumping from 0 to 2 is the necessary condition for multi-
plicity. Substituting the simulated dataβ=10, δ1=0.6 and
p0=0, J=1+δ1(1+p0)=1.6 andγ=150, 195 or 250, respec-
tively, into F(a) of Scheme 3 in Table 1, we obtain

γ = 150, [F0(0), F1(0), F2(0), F3(0), F4(0)]
= [−,0,+,−,−], N(0) = 2

[F0(1), F1(1), F2(1), F3(1), F4(1)]
= [−,−,+,+,−], N(1) = 2

γ = 195, [F0(0), F1(0), F2(0), F3(0), F4(0)]
= [−,0,+,−,0], N(0) = 2

[g0(1), g1(1), g2(1), g3(1), g4(1)]
= [−,−,+,+,0], N(1) = 1

γ = 250, [F0(0), F1(0), F2(0), F3(0), F4(0)]
= [−,0,+,−,+], N(0) = 3

[F0(1), F1(1), F2(1), F3(1), F4(1)]
= [−,−,+,+,+], N(1) = 1

Fig. 4. Schematic representation of the example of Scheme 3 in Table 1.

From the above results, the system is unique whenγ≤195.
Fig. 4 shows multiplicity occurring whenγ>γ design=195.

Scheme 4
It arises from certain complex mechanisms, such as en-

zymes existing in two different forms, two substrate sys-
tems, enzyme with multiple sub-sites, and some examples
for these are given [23,24].

Substituting the data in Table VI of Edwards [1],
kE=0.2395 h−1, Ki=0.3209 mM−1, Km=0.2879 mM,
k′=0.022 mM−1 h−1 andS0=10, 17 or 20 mM, respectively,
into F(a) of Scheme 4 in Table 1, we obtain

S0 = 10, [F0(0), F1(0), F2(0), F3(0), F4(0)]
= [+,+,+,−,−], N(0) = 1

[F0(1), F1(1), F2(1), F3(1), F4(1)]
= [+,+,+,+,−], N(1) = 1

S0 = 17, [F0(0), F1(0), F2(0), F3(0), F4(0)]
= [+,+,+,−,0], N(0) = 1

[F0(1), F1(1), F2(1), F3(1), F4(1)]
= [+,+,+,+,0], N(1) = 0

S0 = 20, [F0(0), F1(0), F2(0), F3(0), F4(0)]
= [+,+,−,−,+], N(0) = 2

[F0(1), F1(1), F2(1), F3(1), F4(1)]
= [+,+,+,+,+], N(1) = 0

Fig. 5 shows multiplicity occurring whenS0 > S
design
0=17 mM. Therefore, we can choose anS0 to let S0 >

S
design
0 =17 mM; then, the system is unique.
On the other hand, an analytical criterion for this is diffi-

cult to derive due to the quadratic nature ofF(a) of Scheme 4
in Table 1. The results of this calculation for various ranges
of the parametersp, r andδ to ensure the existence multi-
plicity are summarized in Table 1 of Sadana et al. [6]. It is
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Fig. 5. Schematic representation of the example of Scheme 4 in Table 1.

seen that, for a given value ofp, r andδ, there exists a min-
imum value ofγ below which multiplicity is absent. The
value ofγ can also be expressed by an empirical equation

γ = 28.86+ 2.16β − 4.01× 10−3β2

+δ(25.78+ 1.78β − 2.73× 10−3β2) (20)

Eq. (20) is purely empirical and merely represents the data
in Table 1 of Sadana et al. [6]; the only advantage of it being
that it can be used readily to examine whether multiplicity
exists. On the other hand, our work can obtain the exact
criteria for multiplicity. Fig. 6 shows that Eq. (20) is too
conservative for a reactor design to obtain a unique steady
state exceptγ=1. It is demonstrated that our method is
superior to the method of Sadana et al. [6].

Fig. 6. Schematic representation of a minimum value ofγ above which
multiplicity occurs for Scheme 4 in Table 1 as per our work and Eq. (20).

6. Conclusion

Combining Sturm’s method with the tangent analysis
method can easily find the necessary conditions for mul-
tiplicity which cannot be obtained by using the tangent
analysis method alone when the order of dimensionless
initial concentration is above 2. Moreover, we can find a
start bifurcation point for steady-state multiplicity. In addi-
tion, our method can suggest a start-up strategy to obtain
a high conversion and unique steady state. Our results can
be helpful for design, start-up and control of biochemical
systems with substrate and product inhibition.

7. Nomenclature

a dimensionless concentration (S/S0)
a1, a2 dimensionless concentration corresponding

to the points at which the tangent from [1,0]
touches the rate curve

E an enzyme concentration (mol l−1)
f (a) dimensionless rate form
F flow rate of the reactant (h−1)
F(a) function defined by Eq. (4)
J parameter defined in

Table 1
k rate constants for the enzyme reaction in

Table 1 (h−1)
k′ rate constants for the enzyme reaction in Table 1

(h−1 mM−1 for Scheme 4)
Ki substrate inhibition constants in Table 1

(mg−1 for Scheme 1, (mol/l)−1 for Scheme 3,
mM−1 for Scheme 4)

K ′
i substrate inhibition constant in Table

1 (mol l−1 for Scheme 2)
Km substrate inhibition constant in Table 1

(mg for Scheme 1, % w/v for Scheme 2, mM
for Scheme 4)

Kp product inhibition constant in
Table 1 (l mol−1 for Scheme 3)

N(a) the number of sign change ofF(a) of Sturm’s
method

p, p0 dimensionless concentration of product in the
reactor and incoming feed, respectively,
(p/S0, p0/S0) for Scheme 3 in Table 1

P, P0 concentration of product in the reactor and
incoming feed, respectively, in Table 1
(mol l−1 for Scheme 3)

S, S0 substrate concentration in the reactor and
incoming feed, respectively, in Table 1
(mg for Scheme 1, % w/v for Scheme 2, mol l−1

for Scheme 3, mM for Scheme 4)

S
design
0 substrate concentration to avoid multiplicity

(mg for Scheme 1, % w/v for Scheme 2, mol l−1

for Scheme 3, mM for Scheme 4)
V volume of the reactor (l)
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Greek symbols
α dimensionless reciprocal of the residence

time defined asKmF/kEV
α+, α− upper and lower bounds ofα within which

multiplicity exists
β, γ , δ, δ1 parameters defined in Table 1
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